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SUMMARY

The description of the �ow that takes place in clari�ers and other wastewater treatment basins may
be a powerful tool to attain an optimum design of these structures, in order to make the most of the
wastewater treatment plant resources. Some authors have attempted so by making use of the potential
�ow or the Stokes equations. When these simpli�cations are used, an approximation of the �ow for
slow creeping conditions is obtained, but only the resolution of the all-term-including Navier–Stokes
equations will allow us to detect the real streamlines and the vortices that show up for even very slow
water �ows. The use of the Navier–Stokes formulae as the governing equations involves the appearance
of complex stability problems that do not show up for the previously mentioned simpli�cations. In
the present work a stable �nite element method for the resolution of the Navier–Stokes equations is
presented, veri�ed, and used in the resolution of some wastewater treatment �ow problems with very
interesting results. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: wastewater treatment; clari�ers; viscous incompressible �ow; FEM; Navier–Stokes;
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1. INTRODUCTION

A �nite element formulation that solves the Navier–Stokes equations in a stable and e�cient
way has been released. Once this code has been evaluated, it has been used in the resolution
of some practical engineering problems related to the wastewater industry. The obtaining of
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the �ow variables in these real cases may provide a powerful tool in order to allow for an
improvement in the geometric features of the �ow basins. Only through the comprehensive
knowledge of the hydrodynamic variables, will the �ow be not only evaluated but also fully
understood. As a consequence, an adequate design of the basins and channels may be carried
out, based upon an e�cient and reliable numerical technique, resulting in great cost savings.
The �nite element method is a numerical procedure for solving the di�erential equations

that govern a wide variety of physical problems. The basis of this numerical technique are
established in ‘the �nite element method’ written in 1967 by Zienkiewicz and Taylor [1]. This
technique subdivides the domain of de�nition into a �nite number of smaller regions, and uses
the weighted residuals method so as to transform the governing di�erential equations into a
set of discrete integral equations. This system of equations gives as a result, the value of the
unknowns at the nodal points of the basic elements, being an approximation to the problem
posed in the governing equations. The application of the �nite element method to the �ow
problems requires some modi�cations with respect to the formulation used for the structural
stress analysis problems, which were its �rst application. Some of these modi�cations have
been borrowed from the �nite di�erence or �nite volume approaches, and many others have
been speci�cally developed for �nite elements. When applying the �nite element analysis to
the problems of the rigid body, the weighted residual method can be exclusively applied to the
Newton’s second law, which for statics clearly turns out to be the equilibrium equation. On the
contrary, when dealing with �uids, the shape is not any more conserved, and apart from stating
the equilibrium of momentum, we have to ensure for the continuity of mass. Consequently,
we have two equations to be veri�ed at the same time, and the �nite element formulation
should also account for the veri�cation of both. The only set of unknowns in the conventional
structural analysis is that of the displacements, as a consequence, the system obtained thanks to
the application of the �nite element method, gives the displacements in the structure depending
on the sti�ness matrix, and the load vector. In the �ow problems, we are headed towards
the so-called mixed �nite element methods, in which both the velocity and pressure set of
unknowns have to be treated simultaneously. Many di�erent algorithms have been used trying
to improve the numerical behaviour of these �nite element formulations for �uids, which
some authors [2, 3], agree to divide into velocity–pressure integrated, segregated and penalty
methods. A 2D penalty formulation will be presented in this work for the resolution of the
laminar viscous incompressible �ow.
The use of a Galerkin formulation, that takes weighting functions equal to trial functions

when solving the Navier–Stokes equations, may lead to some problems of instability in the
obtaining of the �ow by the �nite element method. To avoid this di�culty, some so-called
stabilization procedures have been released. The sti�ness matrix resulting from structural prob-
lems solved by the �nite element method is symmetric, instead the ‘sti�ness’ matrix obtained
for �uids is non-symmetric and the use of symmetric weighting functions may lead to some
instability problems. The faster the �ow turns, the more non-symmetric the coe�cient matrix
becomes. In practice this is featured by the appearance of some spurious node-to-node os-
cillations also known as ‘wiggles’. One way of avoiding these oscillations is to carry out a
re�nement in the mesh, such that convection no longer dominates on an element level, but
this re�nement turns to be a memory resources sink. This point will be avoided in this work
by the use of a stabilization technique of the SUPG type, for the algorithms considered in it.
The 2D Navier–Stokes equations assume a �ow that takes place on a two-dimensional

plane, and it is consequently laminar in that sense. The shallow water formulation has been
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also considered in this work as a way of including the third dimension in the calculations that
allows for an adequate treatment of the free surface. The shallow water formulation gives a
meaningful solution for �ows in which the depth is small compared to the horizontal dimen-
sion. The integration in depth of the 3D Navier–Stokes formulation causes the dependence
of the continuity equation with respect to depth, and consequently the appearance of some
quasi-non-linear terms that depend on both the velocity and the depth. These equations are
solved thanks to a newly developed iterative algorithm, which will be solved based on a
velocity-pressure integrated formulation. The integration in depth of the 3D Navier–Stokes
equations allows for the empirical evaluation of the energy losses taking place in the �ow
on a Manning basis. The Manning formula evaluates empirically the overall energy losses
taking place in the �uid �ow, including those related with the turbulent e�ects. This formu-
lation does not capture the turbulent eddies taking place within the �uid �ow but takes into
account the turbulent energy losses. Many numerical resolutions of the incompressible �ow
use the Manning approach to evaluate these turbulent e�ects. However, most of the available
numerical models neglect the viscous e�ects compared to the turbulent ones and the viscous
term is dropped from the equations. The present shallow water formulation incorporates a
Manning term but does not get rid of the viscous term, allowing for the evaluation of the
overall turbulent losses, together with the viscous e�ects.
A code will be written based upon these particulars, and will be also validated by its

comparison with available numerical and empirical reference results. Once the program has
been validated, it will be used in the resolution of some wastewater problems, and their
results will be presented. Some authors have attempted to evaluate the �ow in clari�ers by
using the Stokes hypothesis, or in other words ignoring the convective term in the Navier–
Stokes equations. The potential �ow equations are also used by some authors to evaluate these
�ows. When these simpli�cations are used, an approximation of the behaviour of the �ow is
obtained, but a very important part of the �ow features is lost.
Some �ow problems related to sewage disposal will be solved by making use of our code,

and their results will be commented upon. We will focus on the obtaining of the �ow in
some of the most commonly used clari�cation and �occulation basins. The evaluation of the
pressure and velocity of the �ow in these basins will provide useful information about the
�ow properties. The data about the streamlines and velocity �eld distribution will allow us to
know where the main recirculation regions are taking place. This information will be priceless
for the purpose of obtaining the geometrical parameters of the basins in order to achieve a
better performance of the treatment plant. The obtaining of this optimum geometry will permit
to avoid the appearance of the recirculation regions, modifying in this way the detention times
within the basin. Thanks to the information obtained by this numerical evaluation of the �ow,
the water treatment basins and channels can consequently be designed to �t the requirements
of the processes being carried out.

2. GOVERNING EQUATIONS

The relationships to be held are the dynamic and the continuity equations. The �rst one gives
the variation in the momentum as the summation of the acting forces on the volume of
integration. To this condition we should add a second one, which states that in the absence
of sources and sinks, the total mass is conserved. Both equalities make up the Navier–Stokes
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equations. Using the indicial notation, we can express the steady Navier–Stokes equations as

ujui; j =−1
�
p; i + �ui; jj + fi

ui; i =0 in �
(1)

together with the boundary conditions:

ui]�1 = bi �ijnj]�2 = ti (2)

where ui is the velocity, p is the pressure, fi is the body force per unit mass, � is density, �
is the cinematic viscosity, �1 and �2 are two non-overlapping subsets of the piecewise smooth
domain boundary �; bi is the velocity vector prescribed in �1; ti is the traction vector prescribed
on �2; �ij is the stress along the boundary �2, and nj is the outward unit vector normal to �2.
The 2D or laminar Navier–Stokes equations do not take into account the third dimension

in space, and provide with the velocities and pressures of a theoretical planar �ow. Never-
theless, for many real �ow problems, the third dimension in space is very important. The
3D Navier–Stokes algorithms involve very high computational costs; moreover they present
a great di�culty in the treatment of the free surface. The shallow water equations are a sim-
pli�cation of the Navier–Stokes equations, which can be used when the main direction of the
�ow is the horizontal one and the distribution of the horizontal velocity along the vertical
direction can be assumed as uniform. These equations assume that the vertical acceleration of
the �uid is negligible and that a hydrostatic distribution of the pressure can be adopted. When
a 2D Navier–Stokes equation is used, the continuity equation is only held on a 2D basis.
Nevertheless, the shallow water equations allow for the veri�cation of the continuity equa-
tion on a 3D sense, providing with adequate results for the depth �eld, even when important
changes in the depth are taking place within the domain.
Integrating the steady 3D Navier–Stokes equations in depth, it is obtained:

hui; i + uih; i=0

ujui; j=−gh; i + �ui; jj + g

S0i − n2ui

√
u2j

R4=3h


 (3)

together with the boundary conditions:

ui]�1 = bi h]�2 =d (4)

where h is the depth, g is the gravity force, S0i is the geometric slopes, d is the depth
prescribed on �2, Rh is the hydraulic radius and n is the Manning coe�cient.

3. FINITE ELEMENT FORMULATION

3.1. Penalty laminar formulation

One of the main di�culties found when obtaining a numerical solution for the Navier–Stokes
equations is that apart from verifying the dynamic constitutive equation, the solutions must
satisfy in addition the incompressibility condition. The mixed �nite element formulations lead
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to a system in which both velocity and pressure are taken as the unknowns [4]. So as to
reduce the dimension of the resulting system of equations, a penalty formulation can also be
used. The penalty formulation provides with the possibility of imposing the incompressibility
constraint without solving an auxiliary pressure equation, by replacing the continuity equation
with the expression:

ui; i=− �p (5)

where the so-called penalty parameter � is a number close to zero. This equation is incor-
porated into the dynamic equation, and therefore a system that depends on both velocity
and pressure is transformed into a velocity-dependant single equation, that converges to the
fully incompressible problem as � approaches zero [5–7]. Once we have applied the weighted
residuals method, the following integral dynamic equation is obtained:

∫
�h

whi (u
h
j u
h
i; j − fi) d� + �

∫
�h

whi; ju
h
i; j d� +

∫
�h

1
�
uhi; iw

h
i; i d�−

∫
�2
thi w

h
i d�2

+
∑
e
�phi

(
uhj u

h
i; j − �uhi; jj −

1
�
(uhi; i); i − fi

)
d�=0 (6)

where �wi=wi + �pi are the SUPG weighting functions to be speci�ed later in the text and the
h superscript stands for the discretization being carried out in our formulation, in terms of a
structured mesh. Once the elementary matrices have been calculated they can be assembled
to obtain the non-linear system:

C�(u; v)�+ �A��+
1
�
B��= f (7)

where C�(u; v) is the convective matrix, A� is the viscous matrix, B� is the penalty matrix,
u is the velocity vector in the x direction, v is the velocity vector in the y direction, f
is the external forces vector and � is the velocity vector. The non-linearities introduced in
the system by the convective term C�(u; v)� are solved by using a successive approximation
method, which can be mathematically expressed as∫

�h

�wiujui; j d� ≈
∫
�h

�wiun−1j uni; j d� (8)

where the superscripts n and n − 1 stand for the values of the variables in the present and
previous iterations. This linearization technique has shown to provide with good results in the
resolution of the Navier–Stokes equations [8].
Once the velocity �eld has been obtained, the pressure �eld can be calculated as a post-

processing result, by using the formula:

ph=− 1
�
uhi; i (7′)

The solution to Equation (6) will approximate that of the initial problem as � tends to zero,
provided that the penalty consistency condition is veri�ed. If not, the use of the penalty
formulation could lead to the obtaining of a non-singular coe�cient matrix associated to the
penalty term. As � tends to zero, this term may dominate the system of equations, therefore the
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whole problem could be over-constrained, and the only possible solution could be the trivial
one [5]. This problem can be avoided by making a so-called selective reduced integration
of the elementary matrices involved in the resolution of the problem. A reduced numerical
integration consists in using a quadrature rule that is not exact for the polynomials considered.
The use of a one point Gauss quadrature rule for the integration of the quadratic functions in
the penalty term transforms the associated ‘penalty’ matrix into a rank de�cient matrix, and
consequently ‘unlocks’ the obtaining of a non-trivial solution [9].

3.2. Shallow Water formulation

For the resolution of the shallow water equations we will use here a �nite element mixed
approach in which the unknowns of the resulting system of equations will be both the velocity
and the depth. If we apply the weighted residuals method on both the dynamic and continuity
shallow water equations, we would obtain

∫
�h

whi (u
h
j u
h
i; j − g(Sh0i − Shfi)) d� + �

∫
�h

whi; ju
h
i; j d�− g

∫
�h

whi; ih
h d�−

∫
�h2

thi w
h
i d�2

+
∑
e

∫
�e
�phi (u

h
j u
h
i; j − �uhi; jj + ghh; i − g(Sh0i − Shfi))d�=0

∫
�h

qh(hhuhi; i + u
h
i h
h
; i) d�=0 (8′)

Now we �nd products of both the velocity and the depth among the terms included in the
dynamic equation. The existence of these terms, allows for the veri�cation of the conservation
of mass in a pseudo-3D basis, but introduces some pseudo-non-linearities in our formulation
that have to be solved by employing another numerical approach [10]. When using a mixed
formulation in the resolution of the Navier–Stokes equations one of the sources of instability
is the one produced by an inappropriate combination of the interpolation functions for the
velocity and pressure unknowns. An equal interpolation may provide good results for the
velocity but a meaningless solution for the depths [11]. The Q1P0 basic pair (bilinear velocity-
constant pressure) has shown to provide with stable solutions even not satisfying strictly the
LBB condition and will be used in the calculations [12].
The linearization of the pseudo-non-linearities that appear in the continuity equation is

going to be carried out on a �nite di�erences basis. For the �rst iteration it will be assumed
that the depth values in the continuity equation are equal to the out�ow given depth. In the
following iterations to be carried out in order to solve for the convection, the depths and
gradients of depth in the continuity equation will be evaluated from the results of the former
iteration, and this evaluation will be carried out in terms of a �nite di�erences approach to
obtain the star depths and star gradients of the depth. For details you can refer to Reference
[12].
After each iteration for convection has been solved, the star depths and star gradients of

the depth are calculated and re-fed into the continuity equation. The use of this algorithm
developed by the authors in the resolution of the Shallow Water equations achieves very
good numerical results as will be seen in the numerical examples. The general procedure
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for the obtaining of the steady system of di�erential equations could be written in its matrix
form as

C�(u; v)�+ �A��− Bh= f (9)

D(h∗)�+ E(ḣ∗)�= 0 (10)

where C�(u; v) is the convective matrix, A� is the viscous matrix, B is the depth matrix,
f is external forces vector, D(h∗) is the star depth matrix, E(ḣ∗) is the star gradient of
depth matrix, f is the external forces vector, h is the depth vector and � is the velocity
vector.

3.3. SUPG stabilization of the algorithms

The SUPG (streamline=upwinding Petrov–Galerkin) technique, �rst developed by Brookes
[13], succeeds in eliminating the spurious velocity �eld, without carrying out a severe re�ne-
ment in the mesh, by considering weighting functions that di�er from trial functions in an
upwinding term. This method was �rst released for the transport equation, and its generaliza-
tion to the Navier–Stokes equation brings an additional problem; that is the appearance of an
excessive di�usion normal to the �ow. The SUPG method eliminates this spurious crosswind
di�usion by considering an arti�cial di�usion that acts only in the direction of the �ow. The
above formulations include a SUPG term in the dynamic weighting functions that are de�ned
as follows:

�wi=wi + �pi with �phi =
�kûhj w

h
i; j

‖uh‖ (11)

where the multi-dimensional de�nition of the di�usion coe�cient �k is given by

ûi=
ui
‖u‖ ; ‖u‖2 = uiui; �k=

��uh�h� + ��uh�h�
2

(12)

where

��=
(
coth �� − 1

��

)
; ��=

(
coth �� − 1

��

)

�� =
uh�h�
2�
; ��=

uh�h�
2�

uh� = e�iu
h
ei; uh�= e�iu

h
ei

(13)

where h�; h� and e�i; e�i are the characteristic basic-element lengths and unit vectors in the
direction of the local axes � and � (see Figure 1). The parameters �� and �� are the directional
Reynolds numbers of the basic element, uhei is the velocity in the interior of the element
and � is the kinematic viscosity of the �uid. Di�erent versions of the streamline upwind
formulation have been used by other authors and can be found in [3, 7, 14]. The present
weighting functions will be used in the penalty laminar and in the shallow water formulation
explained before.
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Figure 1. Characteristic basic-element lengths and unit vectors. Optimal rule
for the approximation of �� y ��.

4. NUMERICAL RESULTS

4.1. The Backward-facing step benchmark problem

The backward-facing step benchmark problem will be used for veri�cation purposes. The
backward step is based upon a simple geometry where �ow separation and reattachment
occur. Experimental data for this problem can be found in Armaly et al. [15], who also
solved this problem numerically by using a control-volume-based �nite di�erence method.
The geometry and boundary conditions considered for this benchmark problem have been

those used in Reference [15]. An expansion ratio of 1:1.94 has been considered for the
widening of the channel, which has a total length of 50 so as to allow for the vortices to
take place. The inlet boundary has been located at 3.5 step heights upstream of the expansion
corner. The domain has been split into 2850 Q1P0 basic non-regular elements with 3021
nodes. The mesh is coarser at the outlet and more re�ned at the left-hand side of the channel,
so as to allow for a better accuracy in the regions where the primary vortices occur. A bias
parameter of 0.5 has been used for this purpose along the x-axis, therefore the width of the
basic elements at the inlet is one half of that of the elements at the outlet, and the height of
the basic elements is uniform within the whole domain. The mesh can be seen in Figure 2,
where a magnifying factor of two has been used for the y-axis. A parabolic horizontal velocity
pro�le has been imposed at the inlet with a maximum velocity of 1, and the velocity is equal
to zero at the boundaries. The lateral sides have been considered as solid boundaries and
the no-slip condition has been imposed on them. Finally, a zero traction condition has been
imposed at the outlet.
The �ow has been obtained for a Reynolds number between 100 and 1200. The Reynolds

number has been de�ned as Re= u · D=�, where u is the average inlet velocity, D is the
hydraulic diameter and the kinematic viscosity � has been altered so as to make the Reynolds
number vary. As foretold by the experimental results in Reference [15], there exists a single
re-circulation zone at the expansion corner up to a Reynolds number of about 450, beyond
which a second vortex shows up at the top boundary, and gets bigger as the Reynolds number
is increased (Figure 3).
The reattachment locations of the vortices are de�ned as follows; s1 is the reattachment

location of the primary vortex, s2 is the separation location of the secondary top boundary
vortex and s3 is the reattachment location of the secondary vortex. All of them have been
measured from the expansion corner, as depicted in Figure 4.
As seen in Figures 5–7, the computed results obtained in the present work compare more

favourably with experimental data than the numerical results from Armaly. Although the
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Figure 3. Flow in a backward facing step. Streamlines for Reynolds=1200.
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Figure 4. Flow over a backward facing step. Sketch of the recirculation lengths.
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Figure 5. Reattachment length s1 versus Reynolds number for the backward facing step.

present results are totally analogous to the experimental data in Reference [15] for s3 and for
all the Reynolds numbers considered, when taking about s2 and specially s1, the experimental
data di�er from the calculated results beyond a Reynolds number of about 400. This di�erence
between measured and calculated values is not only shown in the numerical results by Armaly,
but also in the results by References [2, 16] among many others. The di�erences in these
values are due to the fact that the 3D e�ect becomes very important as the Reynolds number
is increased. As pointed out by Armaly, these e�ects became predominant beyond a Reynolds
number of 1300.
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Figure 6. Reattachment length s2 versus Reynolds number for the backward facing step.
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Figure 7. Reattachment length s3 versus Reynolds number for the backward facing step.

4.2. Application to some wastewater treatment problems

The so de�ned algorithms create an optimum frame for the evaluation of the �ow in some
wastewater treatment basins, which is an essential tool in the designing of the wastewater
treatment plants for the optimization of their behaviour. Making use of the code, the �ow has
been evaluated in some conventional wastewater basins of common use, and has also been
employed in the design of some newly developed basins for wastewater biological treatment,
as part of the research being carried out in the School of Civil Engineering of La Coruña.
Some authors have used the potential �ow equations to evaluate the �ow in clari�ers and
other wastewater treatment basins. When we use these simpli�cations, we can obtain an
approximation of the �ow for slow creeping conditions, but only the resolution of the all-
term-including Navier–Stokes equations will allow us to detect the real streamlines and the
vortices that show up even for very slow water �ows. Let us now use the previously explained
formulations in the resolution of some wastewater treatment basins.

4.3. Flow in a clari�cation basin

The �ow of water in several clari�cation tanks has been considered. Clari�cation has two
main applications in the water treatment processes. Its most usual aim is to reduce the solids
load after coagulation and �occulation have taken place. Its second application is the removal
of heavy settleable solids from a turbid source to lessen the solids load in water.
The simplest type of clari�cation pool is the so-called horizontal-�ow sedimentation basin,

in either its rectangular, square or circular design. The aim of a good clari�cation basin design
is the obtaining of a su�ciently stable �ow, so as to achieve a better sedimentation. There
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Figure 8. Rectangular clari�er with bottom sludge scraper.

is a large number of non-conventional devices for high rate clari�cation, such as tube or
plate settlers, dissolved air �otation clari�ers, sludge blanket or slurry recirculation clari�ers.
The choice of one of those depends on the features of the in�ow water, the out�ow water
requirements, and on the time, space and budget availability to carry out the puri�cation of
the water, and should be determined for each particular case. The description of the �ow is
a powerful tool to attain an optimum shape in the designing of these structures, in order to
make the most of the plant resources. The clari�cation basins calculated as an example have
been a rectangular and a circular conventional clari�ers, and also a plate settler. To do so,
the laminar penalty Navier–Stokes and the shallow water formulations have been used.
The rectangular and circular basins are the most commonly used clari�cation devices, in

spite of their simplicity, they have achieved excellent results with scant maintenance costs.
These basins were originally designed with the capacity to store sludge for several months and
were periodically taken out of service for manual cleaning. Today, most of the clari�cation
basins include a continuous cleaning mechanical equipment, such as dragging chains that plow
the sludge along the basin �oor to hoppers. Nevertheless, these mobile devices for cleaning
and other purposes do not have an important in�uence in the streamline distribution, and can
be ignored when the �ow is calculated (for further details on clari�cation basins you can refer
to Reference [17]).

4.3.1. Flow in a rectangular clari�er. As a �rst example, the �ow in a conventional hori-
zontal-�ow rectangular basin is observed. The tank dimensions are: width 9 m, length 24 m
and depth: 3:3 m. A slope of 1.25% has been given to the �oor in order to allow for sludge
concentration and withdrawal. The design parameters are a detention time 3 h and a surface
loading rate of 1 m=h. When working with clarifying basins, one of the criteria to be used
in their de�nition is that of achieving a maximum head loss at the inlet, so as not to disturb
the slow �ow of the water mass being treated. Therefore, we should avoid turbulence by
placing some kind of energy dissipating structure in the faster zone, that is the inlet (see
Figure 8). One of these maze-looking dissipating structures has been considered for the inlet
of our rectangular clari�er, being placed in the left-hand side. For the outlet, a conventional
over�ow launder has been disposed in the right-hand side, and the main streamlines are
therefore travelling from left to right. For the outlet, a ba�e plate has been placed at a
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Figure 9. Flow in a rectangular clarifying basin. Mesh.
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Figure 10. Flow in a rectangular clarifying basin. Streamlines.

distance of 0:5 m from the spillway so as to avoid �oating stu� getting into the e�uent
nozzle.
The domain in which the �ow takes place has been split into 949 Q1P0 basic elements with

1052 nodes. For the working parameters chosen and an in�ow section of 0:6m, a velocity of
1 cm=s has been imposed at the inlet. The no-slip condition has been imposed at the bottom
and lateral sides, and the spillway has been left free with a zero traction boundary condition.
For the topside, the vertical velocity has been �xed as zero and the horizontal velocity has
been left free (Figure 9).
As can be seen in the streamline plot (Figure 10), a re-circulation zone happens to occur

at the inlet, and a bigger one shows up besides the in�ow ba�e plate. The �rst one is
a consequence of the leftward direction of the in�ow. This is a wanted e�ect so as not to
disturb the �ow in the chamber by the entrance of the water. The second and bigger one takes
di�erent sizes for varying in�ow velocity values, and would vanish for a Stokes analysis that
ignores the convective e�ects. Its existence is an unwanted e�ect and the basin proportions
should be re-designed so as to avoid its existence. Figures 10 and 11 represent the isobars
graph and surface plot for the pressure �eld within a vertical section of the rectangular clari�er,
in both of them the pressure is expressed in cm. The so-obtained pressure �eld is similar to
that of the hydrostatic problem as expected.

4.3.2. Flow in a circular clari�er. The other conventional horizontal-�ow sedimentation basin
considered has been a circular basin with central feeding. The dimensions of the basin are:
depth: 3:65 m and diameter: 17:5 m. A slope of 8% has been considered for the bed. The
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Figure 11. Flow in a circular clarifying basin. Pressures (p=	) in cm.
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Figure 12. Circular clari�er with bottom sludge scraper. Sketch.

design parameters used in its de�nition are: detention time 3h, surface loading rate 1m=h. To
avoid turbulence at the inlet, a 1m high ba�e plate with a diameter of 1:7m has been placed
around the in�ow central cylinder, where the horizontal in�ow velocity is imposed from height
265 cm up to height 365 cm. The outlets are situated at the circumference perimeter, where
an over�ow launder endowed with a ba�e plate, has been disposed. The �ow is obtained by
considering a laminar slice that is solved in one half, and then mirrored by the vertical axis
so as to obtain the whole �ow diagram. Hence, the �ow is calculated in a faster way for the
same rate of accuracy by using its symmetry property (Figure 12).
This half-domain has been divided into 756 Q1P0 basic elements with 817 nodes. A Dirich-

let boundary condition of velocity equal to 1 cm=s has been imposed along the 1 m height
of the inlet so as to �t the design parameters. The no-slip condition is again imposed at
the bottom and the lateral sides, and the spillway is left free with a zero traction boundary
condition. For the topside, the vertical velocity has been �xed as being equal to zero and the
horizontal velocity has been left free (Figure 13).
The streamline plot (see Figure 14) shows a primary vortex that takes up most of the room,

and two secondary vortices, one of them at the inside bottom zone and a smaller one showing
up at the lower external side of the domain. The appearance of these new vortices and the
bigger dimensions of the primary one, compared to the rectangular basin, are a consequence
of the lesser shallowness of the �ow, where the dimension of the vortices depend on the
in�ow velocity. The pressure values are again similar to those of the hydrostatic problem,
and can be seen in Figure 14 in both its isobars plot version, with the pressure units given
in cm (Figure 15).
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Figure 14. Flow in a circular clarifying basin. Streamlines.
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Figure 15. Flow in a circular clarifying basin. Pressures (p=	) in cm.

4.4. Flow in a maze �occulator

The �ow along a maze chamber, often used in the �occulation processes, has been calculated.
Flocculation is de�ned as the agglomeration of small particles and colloids to form settleable
or �lterable particles. A separate �occulation process, where chemical aids are added to water,
is very often included in the treatment train to enhance contact of destabilized particles and
to build dense �oc particles of optimum size. The hydraulic �occulators, in opposition to the
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Figure 16. Flow in a maze �occulator. Mesh.

mechanical ones, allow for the formation of the �ocs without the help of any mechanical
device. This type of �occulation is simple and e�ective, especially for relatively constant
�ows. This sort of chambers is also used in chlorination processes. Chlorination forms part of
the chemical disinfection treatments that are carried out on supply water in order to achieve
its puri�cation and transformation into drinkable water.
The aim of the winding design is to achieve a slow and steady �ow over a long distance

to allow for the �ocs to form. In chlorine disinfection processes, this slowness enables water
to maintain contact with the chemical reagent over a long period of time (see Reference [17]
for further details on maze �occulators). The velocities involved are quite slow, and a laminar
�ow is expected, however, small vortices can show up and the Stokes evaluation of the �ow
could not detect them. For this reason, a convective-term-including formulation is required.
A rectangular chamber, in which water is re-circulated along a winding path, often constitutes
this kind of basins, and for this particular case will be modelled as a prismatic tank with
dimensions 8 m wide and 10 m long, in which a twisting channel is inscribed, split into 10
straight segments. The design parameters chosen for the chlorination tank are the following:
tank dimensions 8 × 10 × 2 m3, channel width 1 m, channel length 80 m, horizontal velocity
6:6 cm=s, contact time 20:2 min (Figure 16).
A 2091-node regular mesh with 2000 Q1P0 basic elements has been chosen to model

the tank. The mixed Shallow Water algorithm has been used with a Manning coe�cient
of 0:012 m−1=3=s. A Dirichlet boundary condition has been prescribed at the inlet, where a
parabolic velocity of 6:6 cm=s has been settled at the six lower left-hand-side nodes. At the
outlet, the velocity on the six lower right-hand-side nodes has been considered as an unknown,
and a hydrostatic pressure boundary condition of 2 m depth has been prescribed. A slope of
10−3 has been considered falling rightward all over the domain. A viscosity of 10−6 m2=s has
been used for the wastewater.
As a �rst guess, the program is used on a Stokes assumption, and the re-circulation obtained

is null as expected. The �ow is driven ‘peacefully’ towards the outlet and the parabolic pro�le
is conserved all over the channel length. The results can be seen in Figure 17.
When the convective term is included, small re-circulation zones show up besides the

corners. These results are plotted in Figure 18.
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Figure 17. Stokes �ow in the maze �occulator. Streamlines.
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Figure 18. Convective �ow in the maze �occulator. Streamlines.

By comparing the results for the Stokes �ow and for the full convective-term-including
formulation, we can observe some di�erences in the velocity and streamlines plots. For the
�rst approach the streamlines are kept in an equidistant position with respect to the sides of
the winding channel all along the path length, and the parabolic pro�le of the velocities is
also maintained in all the cross sections. Meanwhile, the streamlines in the full convective
formulation are sent towards the right-hand side of the channel once they have taken over
the corner. The appearance of a small re-circulation area at these twisting zones can also be
observed for the convective formulation. This re-circulation is the responsible for both the
appearance of sediments besides the corners and also is the cause of a certain energy loss.
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These e�ects are unwanted and could be removed by either carrying out a proper decrease in
the velocity of the �ow or the re-shaping of the channel.

5. CONCLUSIONS

A stable and computationally e�cient code based upon a realistic interpretation of the forces
has been written, having proved to provide with optimum results when compared with some
reference results. The complexity of the �uid �ow creates the need for the use of some
numerical devices, so as to avoid the numerical problems that appear in the resolution of the
Navier–Stokes equations by the �nite element method. One of the sources of instability is
that produced by the need of the veri�cation of some consistency conditions. This potential
source of instability has been eliminated by an appropriate election in the basic functions and
the use of a selective reduced integration for the penalty formulation. As a consequence some
spurious solutions, such as the checkerboard pressure modes, have been eliminated and do
not appear at all in the present formulation.
The other main source of instability in the obtaining of the �ow solutions is due to the

presence of the convective term; the symmetric treatment of this term by a standard Galerkin
Finite Element formulation is the source of this kind of instability, being the cause of the
oscillations that show up in the solution as the Reynolds number is increased. In the algorithms
implemented in the code, a stabilization technique of the SUPG type has been used so as
to avoid the instability that shows up in the resolution of the pressure and the velocity �eld
when a moderate Reynolds number is used in the calculations. The employment of such a
stabilization technique allows us to avoid an excessive re�nement of the mesh, in order to
prevent the obtaining of the unwanted ‘wiggles’ in the solution. A SUPG-type stabilization
technique that a�ects all the terms included in the dynamic equation has been used with
optimum results providing very accurate and computationally e�ective results as has been
demonstrated in the numerical examples provided.
As a result of the comparison carried out between the present and the reference results,

the conclusion is that the solutions obtained by our code compare very favourably with the
reference numerical and empirical results by other authors, contributing to a better and faster
approach to these problems.
The resolution of the Shallow Water equations is carried out thanks to a newly developed

algorithm, which makes use of the �nite di�erence tools within the �nite element frame. The
evaluation of the friction slope in the Shallow Water equations is based upon on a Manning
type formula, which makes use of the empirically determined Manning roughness coe�cient.
This term accounts not only for the energy losses that take place because of the friction with
the wetted perimeter, but also for the overall turbulent losses that take place over the whole
domain of integration.
The algorithms regarded in this work provide a perfect frame for the resolution of the �ow

in some wastewater treatment basins. The evaluation of the pressure and velocity of the �ow
in these basins provides with useful information about the �ow properties that overcomes that
found in other related literature. The data about the streamlines and velocity �eld distribution
allows us to know where the main recirculation regions are taking place. This information
will be priceless for the purpose of obtaining the geometrical parameters of the basins in
order to achieve a better performance for the treatment plant. The obtaining of this optimum
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geometry will allow for a further recirculation, if the energy losses are required; or will enable
its avoidance if unwanted, modifying in this way the detention times within the basin. The
velocity and pressure �elds also provide invaluable information about the distribution of the
discharge among the outlets, which again can be rede�ned in order to improve the behaviour
of the plant. Thanks to the information obtained by this numerical evaluation of the �ow, the
water treatment basins and channels can consequently be designed to �t the requirements of
the processes being carried out.
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